Update on Passenger Delay Analysis

Douglas Fearing
MIT Global Airline Industry IAB/AIC Joint Meeting
October 29, 2009

Collaborators: Cindy Barnhart, Amedeo Odoni, Nitish Umang, Vikrant Vaze

FAA Total Delay Impact project

- Published estimates of costs of delays to airlines and passengers vary from \$14 billion to \$31 billion
- Indirect costs to the U.S. economy are even harder to quantify
- Have NEXTOR apply a rigorous methodological approach to calculate costs of delays
 - For airlines, passengers, and the U.S. economy

Published passenger delay cost estimates

- Air Transportation Association estimates the costs of passenger delays at \$4 billion for 2008
 - \$37.18 per hour times flight delays
- U.S. Congress Joint Economic Committee estimates the costs at \$12 billion for 2007
 - \$37.60 per hour (including schedule padding)
- Who is right?

Passenger flow data

- Planned flight schedules
 - ASQP on-time performance data
- Flight seating capacities
 - Schedule B-43 airline inventory, ETMS ICAO aircraft codes, T-100 monthly segment demands
- Aggregate passenger demand data
 - T-100 monthly segment demands, DB1B quarterly 10% coupon samples (one-way itinerary routes)
- Proprietary ticketing / booking data
 - Two major carriers, one quarter each

Passenger delay calculation

- 1. Determine ASQP flight seating capacities
- 2. Generate potential passenger itineraries based on planned ASQP flights
 - Non-stop and one-stop (over 95% of passengers)
- 3. Allocate passengers to generated itineraries
 - This is where most of our work has been...
- 4. Determine disrupted passengers based on ASQP flight delays and cancellations
- 5. Re-accommodate disrupted passengers

Flight seating capacities

- 1. Match ASQP flights against Schedule B-43 airline inventories
- 2. Use average T-100 seating capacities when the variation is small
- 3. Determine ICAO aircraft code from ETMS and flight offering data
 - Lookup seating capacities in Schedule B-43s
- 4. For remaining 1.5% of flights, default to T-100

Generated itineraries

- Match ASQP flights against ASQP flights
- Filter carrier routes based on DB1B
 - DB1B contains multi-carrier routes, so we do not explicitly consider code shares
- Allow 30 minute to 3 hour connection times
 - Longer connections are less likely to be disrupted

Passenger allocation approaches

1. Deterministic optimization allocation

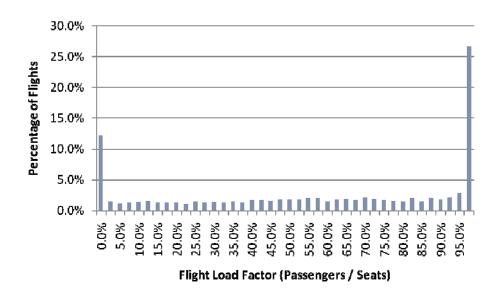
 Linear program assigns passengers to itineraries to minimize deviation from aggregate demand statistics

2. Sampled discrete choice allocation

- Calibrate parameters of discrete choice itinerary shares model using proprietary data
- Sample passenger allocations from calibrated model to disaggregate passenger demand

Problems with optimization based assignment

- Difficult to incorporate secondary factors
 - E.g., connection time and short vs. long haul
- Too many degrees of freedom
 - Basic feasible solutions tend to the extremes



Discrete choice sampling

- Train discrete choice itinerary shares model using proprietary airline bookings data
 - Initial features include time of day, day of week, and connection time
- Sample passenger counts for generated itineraries based on estimated proportions:

$$P(i) = \frac{e^{\beta X_i}}{\sum_{i} e^{\beta X_i}}$$

Discrete choice allocation examples

Example #1

Day of Week	Departure	Connection	Weight	Proportion
Monday	7:00 AM	Non-stop	1.00	21%
Monday	10:00 AM	Non-stop	1.01	22%
Monday	2:00 PM	Non-stop	0.94	20%
Monday	6:00 PM	Non-stop	0.88	19%
Tuesday	7:00 AM	Non-stop	0.83	18%

Example #2

Day of Week	Departure	Connection	Weight	Proportion
Monday	7:00 AM	30 min.	1.11	24%
Monday	7:00 AM	1 hour	1.35	29%
Monday	7:00 AM	2 hour	1.18	25%
Monday	7:00 AM	3 hour	1.04	22%

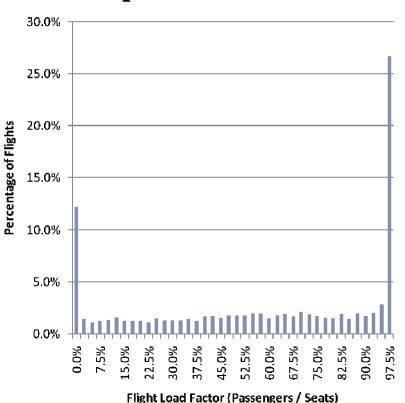
Evaluating the two approaches

- Evaluate by assigning aggregate passengers and comparing to proprietary data
 - Sum absolute deviation between passenger counts for matching itineraries
 - Report as % of allocated demand

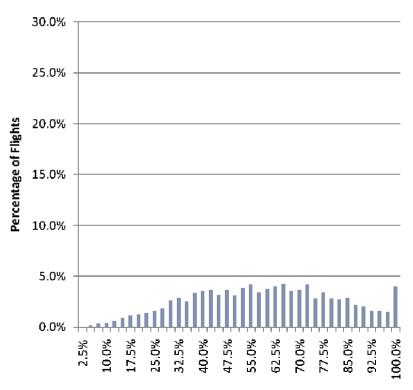
	Optimization	Discrete Choice
Error %	61.2%	25.5%

Comparing flight load factors

Optimization



Discrete Choice



Flight Load Factor (Passengers / Seats)

Measuring passenger delays

- Recover disrupted passengers for each airline
 - Using Bratu & Barnhart Passenger Delay Calculator
 - Greedy re-accommodation of passengers based on scheduled arrival time
- Example results for Continental and JetBlue for the week of October 21st – 27th

Continental passenger delay estimates

	10/21	10/22	10/23	10/24	10/25	10/26	10/27
Num. passengers	79,204	79,324	68,232	75,007	81,529	82,903	58,461
Delay > 15 min.	13%	34%	26%	31%	24%	24%	16%
Num. disrupted	175	797	792	1217	528	776	237
Cancellations	0%	16%	57%	70%	42%	53%	0%
Misconnections	100%	84%	43%	30%	58%	47%	100%
Avg. delay min.	7	23	18	24	19	22	13
Cancellations	0%	2%	14%	12%	1%	3%	0%
Misconnections	9%	11%	5%	6%	3%	5%	8%

JetBlue passenger delay estimates

	10/21	10/22	10/23	10/24	10/25	10/26	10/27
Num. passengers	47,694	43,954	38,429	40,460	45,817	46,535	41,077
Delay > 15 min.	11%	5%	20%	50%	26%	43%	43%
Num. disrupted	84	125	508	267	157	529	222
Cancellations	0%	69%	87%	0%	0%	39%	0%
Misconnections	100%	31%	13%	100%	100%	61%	100%
Avg. delay min.	7	4	16	42	18	44	27
Cancellations	0%	19%	33%	0%	0%	6%	0%
Misconnections	6%	7%	3%	6%	8%	8%	6%

Next steps

- Consider other factors, such as short vs. long haul
- Complete estimates for all ASQP carriers for 2007
- Perform multiple iterations to test sensitivity to sampling of passenger allocations
- Analyze results to look for patterns in passenger delays (e.g. scheduling, network structure, etc.)
- Develop airline disruption response simulator to evaluate passenger impacts of Traffic Flow Management

Conclusion

- Described two approaches for simulating historical passenger itinerary flows
- Demonstrated that discrete choice sampling outperforms the optimization approach
- Provided sample delay results for two airlines
- Discussed next steps and ongoing research plans

